Determination of active ingredients in antihypertensive drugs using a novel green HPLC method approach


TIRIS G., Mehmandoust A., Karimi F., ERK N.

Chemosphere, vol.303, 2022 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 303
  • Publication Date: 2022
  • Doi Number: 10.1016/j.chemosphere.2022.135053
  • Journal Name: Chemosphere
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, EMBASE, Environment Index, Food Science & Technology Abstracts, Geobase, Greenfile, MEDLINE, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Keywords: Antihypertensive drugs, Amlodipine, Telmisartan, Olmesartan, HPLC, PERFORMANCE LIQUID-CHROMATOGRAPHY, AMLODIPINE BESYLATE, OLMESARTAN MEDOXOMIL, CALIBRATION METHODS, HYDROCHLOROTHIAZIDE, QUANTIFICATION, TELMISARTAN, MEDOXAMIL, TABLETS, URINE
  • Bezmialem Vakıf University Affiliated: Yes

Abstract

© 2022 Elsevier LtdA novel, sensitive, fast, and pratic RP-HPLC methods were presented for the quantitative amounts of Telmisartan (TEL) and Olmesartan (OLM) in the presence of Amlodipin (AML) in a binary mixture of pharmaceutical preparation. Waters Spherisorb ODS-2 C18 column was used for separation. These methods were valid over linearity ranges of 2.5–30 μμg/mlL, 2–85 μμg/mlL, and 2–35 μμg/mlL for OLM, TEL, and AML, respectively. The mobile phase system consisted of acetonitrile:methanol: phosphate buffer at pH 3.0 (65:5:30 v/v/v), and the flow rate was 1,5 mlL/min for OLM and AML. The mobile system's other mixture (TEL and AML) was acetonitrile:methanol: phosphate buffer at pH 2.5 (65:5:30 v/v/v), and the flow rate was 1,5 mlL/min. These procedures were successfully applied to bulk, laboratory synthetic mixture, and medicinal dosage forms to use active ingredients quantitatively. The studied methods were validated according to ICH guidelines. In the developed HPLC method, the limit of detection values was found to be 0.020 μμg/mlL for TEL, 0.025 μμg/mlL for OML, and 0.070 μμg/mlL for AML. The correlation coefficients for the HPLC method were found to be 0.9938 for TEL, 0.9996 for OML, and 0.9982 for AML. The calibration range is between 2.5 and -30, 5–35, and 2–85 μμg/mlL for OLM, AML, and TEL, respectively. The proposed HPLC method is a convenient, effective, sensitive, green, and time-saving method for the rapid determination of TEL and OLM in the presence of AML.