A low direct electrical signal attenuates oxidative stress and inflammation in septic rats

Creative Commons License

ÜSTÜNOVA S., HACIOSMANOĞLU E., Bulut H., ELİBOL B., KILIÇ A., Hekimoglu R., ...More

PLOS ONE, vol.16, no.9, 2021 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 16 Issue: 9
  • Publication Date: 2021
  • Doi Number: 10.1371/journal.pone.0257177
  • Journal Name: PLOS ONE
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Agricultural & Environmental Science Database, Animal Behavior Abstracts, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, Chemical Abstracts Core, EMBASE, Food Science & Technology Abstracts, Index Islamicus, Linguistic Bibliography, MEDLINE, Pollution Abstracts, Psycinfo, zbMATH, Directory of Open Access Journals
  • Bezmialem Vakıf University Affiliated: Yes


Electrical stimulation is proposed to exert an antimicrobial effect according to studies performed using bacterial and cell cultures. Therefore, we investigated the effects of electrification on inflammation in septic rats. Twenty-eight male Wistar albino rats were divided into 4 groups: healthy control (C), electrified healthy (E), sepsis (S), and electrified sepsis (SE) groups. Staphylococcus aureus (1 x 10(9) colonies) in 1 ml of medium was intraperitoneally injected into rats to produce a sepsis model. The rats in the E and SE groups were exposed to a low direct electrical signal (300 Hz and 2.5 volts) for 40 min and 1 and 6 h after bacterial infection. Immediately after the second electrical signal application, blood and tissue samples of the heart, lung, and liver were collected. An antibacterial effect of a low direct electrical signal was observed in the blood of rats. The effects of electrical signals on ameliorating changes in the histological structure of tissues, blood pH, gases, viscosity and cell count, activities of some important enzymes, oxidative stress parameters, inflammation and tissue apoptosis were observed in the SE group compared to the S group. Low direct electrical signal application exerts antibacterial, antioxidant, anti-inflammatory and antiapoptotic effects on septic rats due to the induction of electrolysis in body fluids without producing any tissue damage.