Nitric oxide regulates expression of sonic hedgehog and hypoxia-inducible factor-1α in an experimental model of kidney ischemia-reperfusion


Creative Commons License

ÖZTÜRK H., Tuncer M. C., Ozturk H., Buyukbayram H.

RENAL FAILURE, cilt.29, sa.3, ss.249-256, 2007 (SCI-Expanded, Scopus) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 29 Sayı: 3
  • Basım Tarihi: 2007
  • Doi Numarası: 10.1080/08860220601166289
  • Dergi Adı: RENAL FAILURE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.249-256
  • Açık Arşiv Koleksiyonu: AVESİS Açık Erişim Koleksiyonu
  • Bezmiâlem Vakıf Üniversitesi Adresli: Hayır

Özet

This study was designed to determine the effect of L-arginine on hypoxia inducible factor alpha (HIF-1 alpha) and Sonic hedgehog (Shh) levels considered to be involved in the development of ischemia/reperfusion (I/R) injury. Unilaterally nephrectomized Sprague-Dawley rats were subjected to 60 minutes of left renal ischeMia followed by 45 minutes of reperfusion. Group I were sham-operated animals; group 2, I-R/Untreated animals; and group 3, I-R/L-Arg-treated animals. Serum creatinine, blood urea nitrogen (BUN), and kidney malondialdehyde (MDA eve were determined as well as examining the kidneys histologicall The treatment of rats with L-Arg produced a significant reduction in the levels of BUN, creatinine, MDA, and histopathological score compared to renal I/R groups. The Shh expression in the tubulus epithelia were intensely increased in the I-R/L-Arg group when compared to that of the Sham-control and the I-R/ untreated groups. Additionally, the HIF-fix expression in the tubulus epithelia and the interstitial spaces were intensely increased in the I-R/L-Arg group. These findings suggest that NO reduces the renal dysfunction associated with I/R of the kidney and may act as a trigger to induce Shh and HIF-1 activity.